AskDefine | Define deflagration

Dictionary Definition

deflagration n : combustion that propagates through a gas or along the surface of an explosive at a rapid rate driven by the transfer of heat

User Contributed Dictionary

English

Noun

  1. The act of deflagrating; an intense fire; a conflagration or explosion. Specifically, combustion that spreads subsonically via thermal conduction.

Quotations

  • 1849 Heinrich Rose - A Practical Treatise of Chemical Analysis
    If, for example, the mixture of oxygen and hydrogen was twenty volumes, and three volumes of oxygen remained after the deflagration, the mixture consisted of six volumes of hydrogen and six volumes of oxygen.
  • 1998 Michael R Bromwich - The FBI Laboratory: An Investigation into Laboratory Practices & Alleged Misconduct
    Black powder . . . It produces a relatively fast burn or deflagration rather than a detonation and is classified as "low explosive".

Translations

intense fire

Related terms

Antonyms

  • (with respect to speed of propagation): detonation

Hypernyms

Extensive Definition

Deflagration (Lat: de + flagrare, "to burn down") is a technical term describing subsonic combustion that usually propagates through thermal conductivity (hot burning material heats the next layer of cold material and ignites it). Most "fire" found in daily life, from flames to explosions, is technically deflagration. Deflagration is different from detonation which is supersonic and propagates through shock compression.

Applications

In engineering applications, deflagrations are easier to control than detonations. Consequently, they are better suited when the goal is to move an object (a bullet in a gun, or a piston in an internal combustion engine) with the force of the expanding gas. Typical examples of deflagrations are combustion of a gas-air mixture in a gas stove or a fuel-air mixture in an internal combustion engine, a rapid burning of a gunpowder in a firearm or pyrotechnic mixtures in fireworks.

Flame physics

We can better understand the underlying flame physics by constructing an idealized model consisting of a uniform one-dimensional tube of unburnt and burned gaseous fuel, separated by a thin transitional region of width \delta\; in which the burning occurs. The burning region is commonly referred to as the flame or flame front. In equilibrium, thermal diffusion across the flame front is balanced by the heat supplied by burning.
There are two characteristic timescales which are important here. The first is the thermal diffusion timescale \tau_d\;, which is approximately equal to
\tau_d \simeq \delta^2 / \kappa,
where \kappa \; is the thermal diffusivity. The second is the burning timescale \tau_b that strongly decreases with temperature, typically as
\tau_b\propto \exp[\Delta U/(k_B T_f)],
where \Delta U\; is the activation barrier for the burning reaction and T_f\; is the temperature developed as the result of burning that can be found from thermodynamics (the so-called "flame temperature").
For a stationary moving deflagration front, these two timescales are equal: The heat generated by burning is equal to the heat carried away by heat transfer. This lets us find the characteristic width \delta\; of the flame front:
\tau_b = \tau_d\;,
thus
\delta \simeq \sqrt .
Now, the thermal flame front propagates at a characteristic speed S_l\;, which is simply equal to the flame width divided by the burn time:
S_l \simeq \delta / \tau_b \simeq \sqrt .
This simplified model neglects the change of temperature and thus the burning rate across the deflagration front. Also this model neglects the possible influence of turbulence. As a result, this derivation gives the laminar flame speed -- hence the designation S_l\;.

Damaging deflagration events

Damage to buildings, equipment and people can result from a large-scale short-duration deflagration. The nature of the damage is primarily a function of the total amount of fuel burned in the event (total energy available), the maximum flame velocity that is achieved, and the manner in which the expansion of the combustion gases is contained.
In free-air deflagrations, there is a continuous variation in deflagration effects relative to maximum flame velocity. When flame velocities are low, the effect of a deflagration is the release of heat. Some authors use the term flash fire to describe these low-speed deflagrations. At flame velocities near the speed of sound, the energy released is in the form of pressure and the results resemble a detonation. Between these extremes both heat and pressure are released.
right|thumb|300pxWhen a low-speed deflagration occurs within a closed vessel or structure, pressure effects can produce damage due to expansion of gases, as a secondary effect. The heat released by the deflagration causes the combustion gases and excess air to try to expand thermally as well. The net result is that the volume of the vessel or structure needs to either expand/fail to accommodate the hot combustion gases, or build internal pressure to contain them. The risks of deflagration inside waste storage drums is a growing concern among storage facilities . see drum deflagration videos

See also

References

deflagration in German: Deflagration
deflagration in Spanish: Deflagración
deflagration in French: Déflagration
deflagration in Italian: Deflagrazione
deflagration in Dutch: Deflagratie
deflagration in Polish: Deflagracja
deflagration in Russian: Дефлаграция
deflagration in Swedish: Deflagration

Synonyms, Antonyms and Related Words

Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1